If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x-6x^2+8=0
a = -6; b = 24; c = +8;
Δ = b2-4ac
Δ = 242-4·(-6)·8
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-16\sqrt{3}}{2*-6}=\frac{-24-16\sqrt{3}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+16\sqrt{3}}{2*-6}=\frac{-24+16\sqrt{3}}{-12} $
| 2x-2x+x+x=10 | | 4g^2=2 | | 12z-7z-2z-2z+4z=15 | | 3(x+2)=-4x-36 | | d+8/9=−4. | | 12z-7z-2z-2z+4z=5 | | 13n+4n-17n+4n=16 | | 9x+23=180 | | 18-#x+5=5(x-1)-6 | | 10m-m-2m=7 | | -14x^2+4x+14x=-6x^2 | | 3+1y=-4 | | 7.8h+11.4=1.4 | | 7/8=m/100 | | 2c-c=18 | | 18r-17r=17 | | p÷10=7 | | 1/2(8x-10)=35 | | 12x+26=180 | | 2x+18=x+5 | | F(3)=-16t^2+128t+144 | | 9p-63=70 | | 10+4(6-5x)=16-11x | | 2a+8=72 | | -n+3=15 | | 6h-5h=8 | | 64-3b=66 | | 7(2x-3=3 | | ^2+y^2+4y-12=0 | | 9(n+2)=n=26 | | -10=c/5 | | 1/5x+2=18 |